Undergraduate

NPA Seminar: Shirley Li, UC Irvine/Fermilab, “Neutrino-Nucleus Scattering in Neutrino Oscillation Experiments”

: The Deep Underground Neutrino Experiment (DUNE) will be the leading next-generation particle project in the US. It aims to measure CP violation in the neutrino sector and determine the mass ordering of neutrinos. These measurements are straightforward conceptually but challenging practically. One outstanding issue is the modeling of GeV neutrino-nucleus interaction. With a lack of a proper theoretical framework, it is not only difficult to simulate neutrino events in the detector accurately but also difficult to assess its impact on the physics measurements.

NPA Seminar: Paolo Parotto, Penn State, “Finite density equation of state from lattice QCD: recent results from an alternative expansion”

Exploring the Quantum Chromodynamics (QCD) phase diagram has been the goal of extraordinary research efforts from theory and experiment alike. Knowledge of the QCD equation of state at finite temperature and density is crucial to support simulations of heavy-ion collisions. Although lattice simulations are the main tool of investigation for QCD thermodynamics, the determination of the equation of state of QCD at finite chemical potential from direct simulations is hindered by the fermion sign problem.

NPA Seminar: Maximiliano Silva-Feaver, University of California, San Diego and The Center for Computational Astrophysics at the Flatiron Institute, “Microwave SQUID Multiplexer Development for the Simons Observatory”

The Simons Observatory is a next generation cosmic microwave background (CMB) observatory sited at Cerro Toco in the Atacama Desert in Chile, scheduled to begin site commissioning in early 2023. It consists of three low angular resolution telescopes dedicated to measuring the degree scale B-mode signal generated from gravitational waves during inflation and one high angular resolution telescope focused on measuring secondary arcminute scale effects.

NPA Seminar: Chelsea Bartram, SLAC, "A Bird's Eye View of Dark Matter"

Evidence for the existence of dark matter abounds in the study of astrophysical phenomena. Nevertheless, a dark matter candidate has yet to be explicitly identified. Direct detection of such a particle would point to physics beyond the Standard Model. The Axion Dark Matter eXperiment (ADMX) is searching for a wave-like dark matter candidate in the form of an axion. Such a candidate could resolve not only the dark matter problem, but also the strong CP problem.

NPA Seminar: Anupam Mazumdar, University of Groningen, "Entanglement Witness test for Quantum Gravity in a lab"

Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to say that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator.

Dissertation Defense: Ako Jamil, Yale University, “Rare Event Searches in Liquid Xenon with EXO-200 and nEXO”

Noble liquid time projection chambers are ubiquitously used to search for rare events such
as neutrinoless double beta decay or dark matter interactions. A detailed understanding of
light and charge transport in liquid xenon is of the utmost importance when modeling the
performance of these experiments.
In this talk I will present the design and physics reach of the proposed nEXO experiment,

NPA Seminar, Wilke van der Schee, CERN, “Inferring nuclear structure from heavy isobar collisions using Trajectum”

Nuclei with equal number of baryons but varying proton number (isobars) have many commonalities, but differ in both electric charge and nuclear structure. Relativistic collisions of such isobars provide unique opportunities to study the variation of the magnetic field, provided the nuclear structure is well understood. In this Letter we simulate collisions using several state-of-the-art parametrizations of the Zr and Ru isobars and show that a comparison with the exciting STAR measurement arXiv:2109.00131 of ultrarelativistic collisions can uniquely identify the structure of both isobars.

WIDG Seminar, Vas Fotopoulos, University College London, “Multi-scale modeling of the effects of impurities in polycrystalline metallic systems”

Stress-induced voiding (SIV) is amongst the most commonly reported defects in metallic systems used as interconnects in electronic devices. Apart from the development of novel materials, these degradation effects are crucial for the understanding of the properties of nanocrystals. Hydrogen along with other impurities like O, S and C, play a crucial role in metal embrittlement and can be detrimental to the performance of these devices. In addition, the inclusion of metallic dopants is expected to inhibit the effects of non-metallic impurities.

Subscribe to RSS - Undergraduate