Stephen Powell

Stephen Powell's picture
Associate Professor
University of Nottingham
Research Areas: 
Condensed Matter Physics
Research Type: 
Theorist
Education: 
Ph.D. 2007, Yale University
Advisor: 
R. Shankar
Dissertation Title: 
Quantum phases and transitions of many -body systems realized using cold atomic gases
Dissertation Abstract: 

In recent years, new advances in techniques for trapping and cooling atoms have allowed the production of atomic gases at low-enough temperatures and high-enough densities for collective quantum-mechanical effects to become important. This thesis describes theoretical investigations of certain many-body physics problems motivated by these experimental developments. It consists of two main parts.

In the first, I investigate the array of phases exhibited by degenerate mixtures of bosons and fermions with a Feshbach resonance, a bound molecular state whose energy can be tuned with a magnetic field. These phases are distinguished by the presence or absence of a bosonic condensate and also by the different Luttinger constraints that are shown to apply to the Fermi surface(s).

The second part is concerned with bosons in an optical lattice, in which a periodic potential is produced by counterpropagating lasers. Spinless bosons are known to exhibit a quantum phase transition between a Mott insulator and a superfluid state, while bosons with spin have a much richer phase structure. I consider, in particular, a phase transition with a spinless order parameter, and show that the long-time dynamics of spin-carrying excitations is governed by a nontrivial fixed point. The corresponding anomalous exponents are found using a renormalization-group calculation.